设为首页
|
|||
手机版 |
|||
最 新 公 告 |
免费下载:2013年福建省泉州市中考数学试题及答案flash版
2013年福建省泉州市中考数学试卷
一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的, 请在答题卡上 相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.
1.(3分)4的相反数是( )
A. 4 B. ﹣4 C. D.
2.(3分)在△ABC中,∠A=20°, ∠B=60°,则△ABC的形状是( )
A. 等边三角形 B. 锐角三角形 C. 直角三角形 D. 钝角三角形
3.(3分)如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是( )
A. B. C. D.
4.(3分)把不等式组 的解集在数轴上表示出来,正确的是( )
A. B. C. D.
5.(3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
选手 甲 乙 丙 丁
方差(环2) 0.035 0.016 0.022 0.025
则这四个人种成绩发挥最稳定的是( )
A.甲 B. 乙 C. 丙 D. 丁
6.(3分)已知⊙O1与⊙O2相交,它们的半径分 别是4,7,则圆心距O1O2可能是( )
A. 2 B. 3 C. 6 D. 12
7.(3分)为了更 好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S 关于h的函数图象大致是( )
A. B. C. D.
二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.
8.(4分) 的立方根是 .
9.(4分)分解因式:1﹣x2= .
10.(4分)地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为 .
11.(4分)如图 ,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,
则∠AOQ= °.
12.(4分)九边形的外角和为 °.
13.(4分)计算: + = .
14.(4分)方程组 的解是 .
15.(4分)如图,顺次连结四边形ABCD四边的中点E 、F、G、H,则四边形EFGH的形状一定是 .
16.(4分)如图,菱形ABCD的周长为8 ,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .
17.(4分)有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 ,依次继续下去…,第2013次输出的结果是 .
三、解答题(共89分):在答题卡 上相应题目的答题区域内作答.
18.(9分) 计算:(4﹣π)0+|﹣2|﹣16×4﹣1+ ÷ .
20.(9分)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
21.(9分)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.
(1)随机地从盒子里抽取一张,求抽到数字3的概率;
(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数 字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y= 图象上的概率.
22.(9分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.
23.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共 有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中 提供的信息,解答下面的问题.
(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.
(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?
24.(9分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l= t2+ t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.
(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
25.(12分)如图,直线y=﹣ x+2 分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC上的动点.
(1)求∠ABC的大小;
(2)求点P的坐标,使∠APO=30°;
(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.
26.(14分)如图1,在平面直角坐标系中,正方形OABC的顶点A(﹣6,0),过点E(﹣2,0)作EF∥AB,交BO于F;
(1)求EF的长;
(2)过点F作直线l分别与直线AO、直线BC交于点H、G;
①根据上述语句,在图1上画出图形,并证明 = ;
②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明: = ,并通过操作、观察,直接写出BG长度的取值范围(不必说理);
(3)在(2)中,若点M(2, ),探索2PO+PM的最小值.
四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.
27.方程x+1=0的解是 .
28.如图,∠AOB=90°,∠BOC=30°,则∠AOC= .
|
||
苏州进步网辅导中心保证家教教学质量,按提分收费!
家教热线:18936084829(胡老师),0512—66790309。