设为首页
|
|||
手机版 |
|||
最 新 公 告 |
免费下载:2013年湖北省恩施市中考数学试卷及答案flash版
湖北省恩施州2013年中考数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。)
1.(3分) 的相反数是( )
A. B. ﹣ C. 3 D. ﹣3
2.(3分)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)( )
A. 3.93×104 B. 3.94×104 C. 0.39×105 D. 394×102
3.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于( )
A. 70° B. 80° C. 90° D. 100°
4.(3分)把x2y﹣2y2x+y3分解因式正确的是( )
A. y(x2﹣2xy+y2) B. x2y﹣y2(2x﹣y) C. y(x﹣y)2 D. y(x+y)2
5.(3分)下列运算正确的是( )
A. x3•x2=x6 B. 3a2+2a2=5a2 C. a(a﹣1)=a2﹣1 D. (a3)4=a7
6.(3分)如图所示,下列四个选项中,不是正方体表面展开图的是( )
A. B. C. D.
7.(3分)下列命题正确的是( )
A. 若a>b,b<c,则a>c B. 若a>b,则ac>bc C. 若a>b,则ac2>bc2 D. 若ac2>bc2,则a>b
8.(3分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A. B. C. D.
9.(3分)把抛物线 先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )
A. B. C. D.
10.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )
A. 1:4 B. 1:3 C. 2:3 D. 1:2
11.(3分)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:
2009年恩施州各县市的固定资产投资情况表:(单位:亿元)
单位 恩施市 利川县 建始县 巴东县 宜恩县 咸丰县 来凤县 鹤峰县 州直
投资额 60 28 24 23 14 16 15 5
下列结论不正确的是( )
A. 2009年恩施州固定资产投资总额为200亿元
B. 2009年恩施州各单位固定资产投资额的中位数是16亿元
C. 2009年来凤县固定资产投资额为15亿元
D. 2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°
12.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为( )
A. B. C. π+1 D.
二、填空题(本大题共有4小题,每小题3分,共12分。不要求写出解答过程,请把答案直接填写在相应的位置上)
13.(3分)25的平方根是 ±5 .
14.(3分)函数y= 的自变量x的取值范围是 x≤3且x≠﹣2 .
15.(3分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为 6+π .
16.(3分)把奇数列成下表,
根据表中数的排列规律,则上起第8行,左起第6列的数是 171 .
三、解答题(本大题共有8个小题,共72分。解答时应写出文字说明、证明过程或演算步骤)
17.(8分)先简化,再求值: ,其中x= .
18.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.
19.(8分)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为 .
(1)求袋子里2号球的个数.
(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.
20.(8分)如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.
(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.
21.(8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据: , ).
22.(10分)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
23.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.
24.(12分)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
答案
一、选择题
1-6 A B D C CC 7-12 D BBD DC
二、填空题
13、±5
14、 x≤3且x≠﹣2
15、6+π
16、171
三、解答题
17、
解答: 解:原式= ÷
= ×
= ,
当x= ﹣2时,原式=﹣ =﹣ .
18、
解答: 证明:如图,连接AC、BD,
∵AD∥BC,AB=CD,
∴AC=BD,
∵E、F、G、H分别为边AB、BC、CD、DA的中点,
∴在△ABC中,EF= AC,
在△ADC中,GH= AC,
∴EF=GH= AC,
同理可得,HE=FG= BD,
∴EF=FG=GH=HE,
∴四边形EFGH为菱形.
19、
解答: 解:(1)设袋子里2号球的个数为x个.
根据题意得: = ,
解得:x=2,
经检验:x=2是原分式方程的解,
∴袋子里2号球的个数为2个.
(2)列表得:
3 (1,3) (2,3) (2,3) (3,3) (3,3) ﹣
3 (1,3) (2,3) (2,3) (3,3) ﹣ (3,3)
3 (1,3) (2,3) (2,3) ﹣ (3,3) (3,3)
2 (1,2) (2,2) ﹣ (3,2) (3,2) (3,2)
2 (1,2) ﹣ (2,2) (3,2) (3,2) (3,2)
1 ﹣ (2,1) (2,1) (3,1) (3,1) (3,1)
1 2 2 3 3 3
∵共有30种等可能的结果,点A(x,y)在直线y=x下方的有11个,
∴点A(x,y)在直线y=x下方的概率为: .
20、
解答: 解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y= ,
∵△ABC是等边三角形,
∴AC=AB=6,∠CAB=60°,
∴AD=3,CD=sin60°×AC= ×6=3 ,
∴点C坐标为(3,3 ),
∵反比例函数的图象经过点C,
∴k=9 ,
∴反比例函数的解析式y= ;
(2)若等边△ABC向上平移n个单位,使点B恰好 落在双曲线上,
则此时B点的横坐标为6,
即纵坐标y= = ,也是向上平移n= .
21、
解答: 解:过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,
∵∠D=90°,
∴四边形BEDF是矩形,
∴BE=DF,BF=DE,
在Rt△ABE中,AE=AB•cos30°=110× =55 (米),BE=AB•sin30°= ×110=55( 米);
设BF=x米,则AD=AE+ED=55 +x(米),
在Rt△BFN中,NF=BF•tan60°= x(米),
∴DN=DF+NF=55+ x(米),
∵∠NAD=45°,
∴AD=DN,
即55 +x= x+55,
解得:x=55,
∴DN=55+ x≈150(米).
答:“一炷香”的高度为150米.
22、
解答: 解:设甲商品的进价为x元,乙商品的进价为y元,由题意,得
,
解得: .
答:商品的进价为40元,乙商品的进价为80元;
(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得
,
解得:29 ≤m≤32
∵m为整数,
∴m=30,31,32,
故有三种进货方案:
方案1,甲种商品30件,乙商品70件,
方案2,甲种商品31件,乙商品69件,
方案3,甲种商品32件,乙商品68件,
设利润为W元,由题意,得
W=40m+50(100﹣m),
=﹣10m+5000
∵k=﹣10<0,
∴W随m的增大而减小,
∴m=30时,W最大=4700.
23、
解答: (1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径 ,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,
∴DF= AF=1,
∴AD= DF= ,
∵AF∥CG,
∴DA:AG=DF:CF,即 :AG=1:2,
∴AG=2 .
24、
解答: 解:(1)∵直线l:y=3x+3与x轴交于点A,与y轴交于点B,
∴A(﹣1,0),B(0,3);
∵把△AOB沿y轴翻折,点A落到点C,∴C(1,0).
设直线BD的解析式为:y=kx+b,
∵点B(0,3),D(3,0)在直线BD上,
∴ ,
解得k=﹣1,b=3,
∴直线BD的解析式为:y=﹣x+3.
设抛物线的解析式为:y=a(x﹣1)(x﹣3),
∵点B(0,3)在抛物线上,
∴3=a×(﹣1)×(﹣3),
解得:a=1,
∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3.
(2)抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).
直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1,
∴M(2,1).
设对称轴与x轴交点为点F,则CF=FD=MN=1,
∴△MCD为等腰直角三角形.
∵以点N、B、D为顶点的三角形与△MCD相似,
∴△BND为等腰直角三角形.
如答图1所示:
(I)若BD为斜边,则易知此时直角顶点为原点O,
∴N1(0,0);
(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,
∵OB=OD=ON2=3,
∴N2(﹣3,0);
(III)若BD为直角边,D为直角顶点, 则点N在y轴负半轴上,
∵OB=OD=ON3=3,
∴N3(0,﹣3).
∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).
(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).
(I)当点P位于直线BD上方时,如答图2所示:
过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.
S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE= (3+n)•m﹣ ×3×3﹣ (m﹣3)•n=6,
化简得:m+n=7 ①,
∵P(m,n)在抛物线上,
∴n=m2﹣4m+3,
代入①式整理得:m2﹣3m﹣4=0,
解得:m1=4,m2=﹣1,
∴n1=3,n2=8,
∴P1(4,3),P2(﹣1,8);
(II)当点P位于直线BD下方时,如答图3所示:
过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.
S△PBD=S梯形PEOD+S△BOD﹣S△PBE= (3+m)•(﹣n)+ ×3×3﹣ (3﹣n)•m=6,
化简得:m+n=﹣1 ②,
∵P(m,n)在抛物线上,
∴n=m2﹣4m+3,
代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.
故此时点P不存在.
综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).
|
||
苏州进步网辅导中心保证家教教学质量,按提分收费!
家教热线:18936084829(胡老师),0512—66790309。