苏州进步教育家教网  
设为首页
手机版
 
欢迎您访问苏州进步教育家教网,我们将为您提供最优质的家教/教学服务!
最 新 公 告

1.2022年暑假班招生报名已启动.
2.本家教网站的免费视频学习中心已开通.
3.本家教网站的资料查找中心已开通.
家教电话:18936084829(胡老师).

 


点击下载试题

友情提示:
1.点击下载时,跳转至新页面后,点击普通下载即可。
2.如果提示你,输入解压密码时,密码为,“苏州进步网www.szjjedu.com”。
3.如在线浏览可以点击全屏按钮。
4.您下载的资源均为完整版。

中高考家教
当前位置:主页 > 家教资料 > 数学家教资料 >


2013年湖北省各市中考数学三角形部分分类解析flash版


作者:deadmin 来源:未知 发布时间:2013-09-14 阅读次数:




免费下载:2013年湖北省各市中考数学三角形部分分类解析flash版
 
专题9:三角形
一、选择题
1. (2013年湖北鄂州3分)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=【  】

A.        B.        C.       D.
 
2. (2013年湖北恩施3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=【    】

A.1:4      B.1:3      C.2:3      D.1:2
答案】D。

3. (2013年湖北黄石3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=900,∠A-450,∠D=300,斜边AB=6,
DC=7,把三角板DCE绕着点C顺时针旋转150得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1
的长度为【    】

A.           B.5            C. 4               D. 

4. (2013年湖北荆州3分)如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为【    】

A.3:4       B.1:2       C.2:3       D.1:3
 
5. (2013年湖北潜江、仙桃、天门、江汉油田3分)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为【    】

A.4cm       B.3cm       C.2cm       D.1cm

6. (2013年湖北十堰3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为【    】

A.7cm       B.10cm       C.12cm       D.22cm

7. (2013年湖北武汉3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是【    】

A.18°      B.24°      C.30°      D.36°

8. (2013年湖北孝感3分)式子 的值是【    】
A.        B.0     C.       D.0
【答案】B。
 
9. (2013年湖北孝感3分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于【    】

A.        B.      C.      D.
 
10. (2013年湖北宜昌3分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是【    】

A.(6,0)       B.(6,3)      C.(6,5)      D.(4,2)
二、填空题
1. (2013年湖北鄂州3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为  ▲  cm.


2. (2013年湖北鄂州3分)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为  ▲  .



3. (2013年湖北黄冈3分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,
则DE=    ▲    .


4. (2013年湖北荆门3分)若等腰三角形的一个角为50°,则它的顶角为   ▲   .

5. (2013年湖北荆门3分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA= ,则DE=   ▲   .


6. (2013年湖北荆州3分)如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD=   ▲   米(结果可保留根号)


7. (2013年湖北荆州3分)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形AnBnDnEn 的边长是   ▲   .


8. (2013年湖北荆州3分)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:
①△A1AD1≌△CC1B;
②当x=1时,四边形ABC1D1是菱形;
③当x=2时,△BDD1为等边三角形;
④ (0<x<2);
其中正确的是   ▲   (填序号).


9. (2013年湖北潜江、仙桃、天门、江汉油田3分)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是   ▲   (写出一个即可).

 
10. (2013年湖北十堰3分)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为   ▲   米.


11. (2013年湖北十堰3分)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当 ≤r<2时,S的取值范围是   ▲   .

12. (2013年湖北武汉3分)计算     ▲    .

13. (2013年湖北孝感3分)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为300,测得C点的俯角β为600.则建筑物CD的高度为   ▲   m(结果不作近似计算).

三、解答题
1. (2013年湖北鄂州9分)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:
(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据: ≈1.73, ≈1.41, ≈2.24)

2. (2013年湖北恩施8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据: ).

3. (2013年湖北黄冈8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数 )



4. (2013年湖北黄石8分)高考英语听力测试期间,需要杜绝考点周围的噪音。如图,点A是某市一高考考点
在位于A考点南偏西15°方向距离125米的 点处有一消防队。在听力考试期间,消防队突然接到报警电话,
告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火。已知消防车的警报声传播半径
为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶。试问:消防车是否需要改道行驶?
说明理由.( 取1.732)

大于100米,不需要改道行驶,不大于100米,需要改道行驶。
5. (2013年湖北黄石9分)如图1,点C将线段AB分成两部分,如果 ,那么称点C为线段AB的黄
金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的
定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果 ,那么称直线l
为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=360°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图(3),请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=900,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.


∵D是AB的黄金分割点,∴ 。∴ 。

6. (2013年湖北荆门9分)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.

【答案】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC。
  7. (2013年湖北荆门10分)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.



8. (2013年湖北荆州8分)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.

 
9. (2013年湖北潜江、仙桃、天门、江汉油田6分)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.

 
10. (2013年湖北潜江、仙桃、天门、江汉油田6分)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.

11. (2013年湖北十堰6分)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.

【答案】证明:∵AB=AC,∴∠B=∠C。
 
12. (2013年湖北随州8分)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.
提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.
13. (2013年湖北随州9分)为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度.如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.
(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)
(2)在这段时间内,海监船航行了多少海里?(参数数据: ,结果精确到0.1海里)

14. (2013年湖北武汉6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.
求证:∠A=∠D.




15. (2013年湖北咸宁10分)阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.




16. (2013年湖北襄阳6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)

17. (2013年湖北襄阳7分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为   ▲   度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.

暑期家教

 


 

网络违法犯罪举报网站  中华人民共和国工业和信息化部网站备案中心备案网站  苏州公安部备案网站  中国互联网违法和不良信息举报中心  绿色安全网站  中国文明网

 

 

苏州进步网辅导中心保证家教教学质量,按提分收费!

家教热线:18936084829(胡老师),0512—66790309。